Study the effect of carbon and temperature on hardening of steel.

0

 

To study the effect of carbon and temperature on hardening of steel.


Observations & Study :-

    Effect of Carbon content on hardening of Steel

Carbon steel is an alloy of iron and carbon. Low alloy steel includes carbon and small additions of other alloying elements such as chromium, manganese, molybdenum, etc. up to maximum of 5% total added alloying content.

What happens when the carbon content is increased? Hardness is increased.  But the hardness of the metal has to be controlled because it could become brittle. Depending on the application, brittleness may be a critical factor. Think about a drill bit that you’ve been using and it breaks while you’re in the middle of an operation. That faulty tool could have broken because it had high carbon content and became quite brittle. In addition to brittleness, yield point, tensile strength and rusting are all affected by increased carbon concentration.

Increasing carbon also reduces the weldability, especially above ~0.25% carbon. Plasticity and ductility are similar. Think of a blacksmith, where he’s hammering on a knife blade. If there’s too much carbon, the metal could break, and won’t be able to be formed or wrought into the final product. If a product doesn’t break, that doesn’t necessarily mean it’s of good quality.  Higher carbon also reduces air corrosion resistance, which causes rusting. Rusting, of course, could cause problems later.

The incorrect carbon level could also result in weld decay and creep stress rupture.  Here is a summary of the study.

On increasing carbon content there is a increase in

1.    Hardness

2.    Brittleness

3.    Yield Point

4.    Tensile Strength

5.    Rusting

On increasing carbon content there is a decrease in

1.    Weldability

2.    Plasticity

3.    Ductility

4.    Air corrosion resistance.


Effect of Temperature on hardening of Steel

 

Hardening and tempering of engineering steels is performed to provide components with mechanical properties suitable for their intended service. Steels are heated to their appropriate hardening temperature {usually between 800-900°C), held at temperature, then "quenched" (rapidly cooled), often in oil or water. This is followed by tempering (a soak at a lower temperature) which develops the final mechanical properties and relieves stresses. The actual conditions used for all three steps are determined by steel composition, component size and the properties required.

Hardening and tempering can be carried out in "open" furnaces (in air or combustion products), or in a protective environment (gaseous atmosphere, molten salt or vacuum) if a surface free from scale and decarburisation (carbon loss) is required ("neutral hardening", also referred to as "clean hardening").

Two specialised quenching options can be applied in special circumstances:

Martempering (also known as "marquenching") uses an elevated-temperature quench (in molten salt or hot oil) which can substantially reduce component distortion. This process is limited to selected alloy-containing steels and suitable section sizes.

Austempering can be applied to thin sections of certain medium- or high-carbon steels or to alloy-containing steels of thicker section. It requires a high temperature quench and hold, usually in molten salt, and results in low distortion combined with a tough structure that requires no tempering. It is widely used for small springs and presslngs.

What are the advantages?

Hardening and tempering develops the optimum combination of hardness, strength and toughness in an engineering steel and offers the component designer a route to savings in weight and material. Components can be machined or formed in a soft state and then hardened and tempered to a high level of mechanical properties.

 Hardening from open furnaces is often employed for products such as bars and forgings that are to be fully machined into components afterwards. Neutrally clean hardening is applied to components that require surface integrity to be maintained; examples include nuts, bolts, springs, bearings and many automotive parts. Neutral clean hardening is carried out under tightly-controlled conditions to produce a precision component needing the minimum of final finishing.


Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.

Thanks for your valuable comment.

Thanks for your valuable comment.

Post a Comment (0)

#buttons=(Accept !) #days=(20)

Our website uses cookies to enhance your experience. Learn More
Accept !
To Top